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LETTER TO THE EDITOR 

Real time functional effective action for the quantum dynamics 
of a transverse king model at finite temperature 

T K KopeC 
Institute for Low Temperature and Structure Research, Polish Academy of Sciences, 
Pr6chpika 95, 53-529 Wroclaw, Poland 

Received 11 November 1986 

Abstract. The method of thenno-field dynamics (TFD, the real time, finite-temperature 
quantum field theory) for the quantum spin algebra has been employed to construct the 
coarse-grained functional action for the dynamics of the spin-4 k ing  model in a transverse 
magnetic field. The applicability of the present approach to the unified treatment of the 
quantum and classical critical dynamics is pointed out. 

There have recently been great efforts to explore the critical behaviour of quantum 
systems, motivated by the possibility of novel physical behaviour arising from the 
influence of quantum fluctuations on the phase transition picture (see Busiello et a1 
(1983) for a review). A great deal of interest has been devoted to the study of the 
crossover phenomenon resulting from the interplay between classical and quantum 
behaviour in the low-temperature limit (De Cesare 1982, Lukierska-Walasek and 
Walasek 1983). The common feature of these approaches is the use of the imaginary 
time Matsubara (1955) technique to construct the generalised version of the Landau- 
Ginzburg-Wilson ( LGW) functional for the subsequent renormalisation group ( RG) 
analysis. However, as has been pointed out by Ruggiero and Zannetti (1983) the 
quantum-classical crossover in the critical dynamics cannot be described properly 
based on the ‘imaginary time’ technique alone. This difficulty stems from the fact that, 
in the Matsubara approach, the ‘time’ variable is restricted to a finite interval, so one 
requires discrete frequency summation and a tedious process of analytical continuation. 
Thus, the aim of the present letter is to approach this problem in terms of the real 
time functional framework, which allows us to study both quantum and classical critical 
dynamics in a unified way. To be specific we consider, as a particular example, the 
spin-f Ising model in a transverse magnetic field which has been widely studied in the 
context of quantum critical phenomena (Elliot and Wood 1971, Young 1975, Pfeuty 
1976, Lawrie 1978a, b, Lukierska-Walasek and Walasek 1983). The key point for our 
considerations is the use of the thermo-field dynamics (TFD) method due to Takahashi 
and Umezawa (19751, which has been successfully applied in various areas of physics 
(see Umezawa et al 1982) and has recently been generalised to the quantum spin 
algebra case (Whitehead et al 1984). 

The Hamiltonian of the model has the form 

H = - f &s; s; - r si (1) 
ij I 
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where S p ( a  = x, y ,  z )  are the spin-f operators obeying the usual commutation rules, 
while r denotes the transverse magnetic 5eld. The dynamics of the system in TFD is 
determined by the thermal Hamiltonian H given by (Takahashi and Umezawa 1975) 

A=H-d 
where d is the tilde Hamiltonian, corresponding to the H Hamiltonian given by ( l ) ,  
written in terms of the tilde conjugate operators $ associated with any Sp (d = H [ s ] ) .  
The temperature enters the theory through the tilde substitution law (Umezawa et a1 
1982), being the basis of the Kubo-Martin-Schwinger relation, and controls the relation 
between Sp and S’S through their action on the temperature-dependent vacuum IO@)) 

(O(P)F(t--iP/2) =(O(P)l&t) s(t + iP/2)lO(P)) = & t)IO(P)) ( 2 )  

where 

s(t) = exp(iAt)S exp(-ifit). 

In contrast to the derivation of the LGW functional via the ‘imaginary time’ technique, 
where one constructs the functional representation for the partition function, in the 
TFD method we start from the generating functional for the real time Green functions 
at finite temperature in the form 

I 

where 5,( t )  and t2( t )  denote the external sources associated with the non-tilde (SI( t )  = 
S(  t ) )  and tilde (S,( t )  = s( t ) )  operators, taken in the Heisenberg picture 

s,(t) = exp(iAt)Sa exp(-iAt) ( a  = 1 ,2 )  (4) 

and T is the usual time ordering operator. 
In order to have a suitable form of the generating functional for the RG analysis 

we write the expression (3)  as a functional integral by making use of the functional 
Fourier transform (Rzewuski 1969). Thus, one obtains 

where 
tcn 

d x . .  .=? [-, d t . .  . . 

From (3) and (5) it becomes apparent that the physical quantities, which are expressed 
as the vacuum averages of products of the original spin operators, can be expressed 
via ( 5 )  in terms of the expectation values of products of the fields pa( t ) .  The expectation 
value here means the functional averaging 
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with respect to the functional 5?[qP,, q2] acting as a weighting factor. The latter is 
related to the Z[& ,g2]  via the inverse Fourier transform 

exp{i6P[qp,, ~ ~ 1 )  = DS1Dg2 exp( i W[&, 521 - i  dx&(x)qa(x))  (7) 

where we have introduced the generating functional for the cumulant averages 

In principle the explicit form of the 'action functional' 5?[q1, p2] can be derived 
from the generating functional for cumulants by performing the functional integral 
(7). In practice this can be achieved by using the one-loop approximation, which is 
equivalent to the Gaussian average. However, by doing this, one immediately realises 
that the exponential factor on the left-hand side of (7) represents just the generating 
functional for the one-particle irreducible vertex functions. Thus, up to a constant 
factor, one obtains the effective action in a form of the Volterra series 

with the multipoint real time vertex functions I ' (xl , .  . . , x,) as the coefficients of the 
expansion. From the general structure of the TFD (Niemi and Semenoff 1983) it follows 
that the action (9) can always be separated into temperature-independent and tem- 
perature-dependent parts: 

T[QI Y 9 2 1  = ~ o [ Q l l - ~ o [ Q 2 1 +  q 3 [ Q l ,  Q21 (10) 

where all the temperature is contained in the last term of (10). 
To analyse the critical phenomena it is sufficient to take into account the simplified 

version of the functional T[pl, p2] retaining in the expansion the terms up to fourth 
order only. Furthermore, the components of the field Q which become critical are 
cp & cp ones and the remaining may be integrated out. Then, for the two-point transverse 
vertex function in the expansion (9), one has explicitly 

where the correlation function K"(k, o) and self-energy part Zzz(k,  w )  acquire the 
matrix form 

and 

T = ( l  0 -1 "). 
In the lowest-order approximation, using the Wick theorem for spins in the TFD 

formalism (Whitehead et a1 1984) one gets for the self-energy part 
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where B,(x) is the Brillouin function and 6 is the positive infinitesimal, while UE(w) 
is the thermal transformation matrix for the boson field (Takahashi and Umezawa 1975) 

(14) 
= (cosh 8 sinh 8 )  cosh’ 8 = [ 1 - exp( - p w ) ] - ’ .  

sinh 8 cosh 8 

In the long wavelength limit we can expand the Fourier transform of the exchange 
integral according to 

J ( ~ ) = J ( o ) - ~ ~ + o ( ~ ~ ) .  (15) 

Thus, in the continuum limit, we get for the effective action (9) the following simplified 
form: 

where, in (16), the leading temperature dependence enters only via the propagator 
A(x - x’), while the higher-order terms and the non-local character of the four-point 
spin vertex has been neglected. In the momentum-frequency representation the propa- 
gator A( k, w )  becomes 

A(k, U )  = UE(w)r[ mi+ k2 - c2( w + i6r)*]-’ U”,( w )  (17) 

where ~-’=&?TB, ,~(pr/2)  and mo is the ‘critical mass’ which vanishes along the 
critical line given by 

T / J ( O )  = f  tanh(pr/2).  (18) 

The functional (13) constitutes the particular example of the quantum counterpart 
of the classical Lagrangian formulation for the critical dynamics due to Jansen (1976) 
based on the Martin er a1 (1973) approach. In the latter, in order to obtain the proper 
description of the dynamics, the introduction of the second conjugate field( the so-called 
response field) is needed. In the present approach, which relies on the TFD, a similar 
role is played by the tilde conjugate field. As has been shown by Matsumoto et a1 
(1984) the response theory can be put in a simple time-ordered TFD formulation. The 
reinterpretation of these results within the functional framework is then obvious. 
Because the components of the thermo-doublet field are mixed via the matrix elements 
of the propagator (17) only, one realises from (14) and (17) that, at T = 0 ,  the TFD 

reduces simply to the duplication of the standard quantum field theory. Thus, after 
analytical continuation to the Matsubara ‘imaginary time’, the standard Euclidean 
version of the zero-temperature action for the transverse Ising model is retrieved. In 
conclusion we note that the formulation presented here can be regarded as the starting 
point for the unified analysis of the quantum and classical critical dynamics within 
the renormalisation group method. An explicit presentation of this subject will be 
given elsewhere. 
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